Invariants of quivers with potentials¶
Compute refined invariants for some quivers with potentials.
1. Compute (total refined) invariants for the cyclic quiver C_n with the potential consisting of one term (the cycle).
2. Compute (total refined) invariants for the McKay quiver of C^3/Z_r with the induced potential (consisting of 3-cycles), where the action is given by (1, k, -k-1) for any 0<=k<r. This potential quiver can be obtained as a translation potential quiver of a cyclic quiver, see arXiv:1911.01788. Some of the results are presented in arXiv:2012.14358.
EXAMPLES:
sage: from msinvar.quivers import CyclicQuiver
sage: from msinvar.potential_quiver_invar import *
sage: r, k = 3, 1
sage: CQ = CyclicQuiver(r); CQ
Cyclic quiver: Quiver with 3 vertices and 3 arrows
sage: CQ.prec([2]*r) # precision vector
sage: CQ.intAtt().dict() #Attractor invar for a cyclic quiver without potential
{(0, 0, 1): 1, (0, 1, 0): 1, (1, 0, 0): 1, (1, 1, 1): -y}
sage: total=cyclic_potential_total(CQ) # Total invar for a cyclic quiver with potential
sage: CQ.intAtt(total).dict() #Attractor invar for a cyclic quiver with potential
{(0, 0, 1): 1, (0, 1, 0): 1, (1, 0, 0): 1}
sage: PQ = CQ.translation_PQ(1); PQ # translation quiver with potential
Translation PQ: Quiver with 3 vertices, 9 arrows and potential with 6 terms
sage: PQ.prec([2,2,2])
sage: total=translation_PQ_total(PQ)
sage: PQ.intAtt(total).simp().dict() #Attractor invar for the translation quiver with potential
{(0, 0, 1): 1,
(0, 1, 0): 1,
(1, 0, 0): 1,
(1, 1, 1): (-2*y^2 - 1)/y,
(2, 2, 2): (-2*y^2 - 1)/y}
-
msinvar.potential_quiver_invar.
interaction_invariant
(S, si, dim, Q)[source]¶ Return expression of the form:
\[\sum_{m:S\to N} (-y)^{-\sum_{i,j\in S} m_im_j\sigma(i,j)} /(1/y^2)_m\cdot x^{\sum_{i\in S} m_i \dim(i)}\]Q is a Quiver, y=Q.y, r=Q.rank.
S is a list.
\(\sigma:S\times S\to Z\) is a map (interaction form).
\(\dim:S\to Z^r\) is a map (dimension vectors).
\((q)_m=\prod_{i\in S}(q)_{m_i},\ (q)_k=(1-q)...(1-q^k)\).
The sum runs over m such that \(\sum_i m_i \dim(i)\le\) Q.prec().
-
msinvar.potential_quiver_invar.
translation_PQ_total
(PQ, prec=None)[source]¶ Return total invariant (stacky invariant for the trivial stability) for the translation potential quiver, assuming that the base quiver has implemented methods
ind_list()
,ind_dim()
,ind_hom()
.PQ
– translation potential quiver or its wall-crossing structure.See
msinvar.quivers.TranslationPQ
.EXAMPLES:
sage: from msinvar import * sage: from msinvar.potential_quiver_invar import * sage: Q=CyclicQuiver(3); Q Cyclic quiver: Quiver with 3 vertices and 3 arrows sage: PQ=Q.translation_PQ(1); PQ Translation PQ: Quiver with 3 vertices, 9 arrows and potential with 6 terms sage: I=translation_PQ_total(PQ, [2,2,2]) sage: PQ.intAtt(I).simp().dict() {(0, 0, 1): 1, (0, 1, 0): 1, (1, 0, 0): 1, (1, 1, 1): (-2*y^2 - 1)/y, (2, 2, 2): (-2*y^2 - 1)/y}
-
msinvar.potential_quiver_invar.
cyclic_potential_total
(CQ, prec=None)[source]¶ Return total stacky invariants (for the trivial stability) for a cyclic quiver with the cyclic potential.
CQ is the cyclic quiver or its wall-crossing structure.
-
class
msinvar.potential_quiver_invar.
QuiverExample1
[source]¶ Bases:
msinvar.quivers.Quiver
Quiver 1->0, 1->2 with methods for indecomposables and a non-trivial automorphism.
EXAMPLES:
sage: from msinvar.potential_quiver_invar import * sage: Q=QuiverExample1(); Q Quiver with 3 vertices and 2 arrows sage: PQ=Q.translation_PQ(); PQ Translation PQ: Quiver with 3 vertices, 7 arrows and potential with 4 terms sage: PQ.prec([3,3,3]) sage: I=PQ.translation_PQ_total() sage: PQ.intAtt(I).dict() {(0, 0, 1): 1, (0, 1, 0): -y, (0, 1, 1): 1, (1, 0, 0): 1, (1, 0, 1): -y, (1, 1, 0): 1, (1, 1, 1): -y, (1, 2, 1): -y}
-
ind_list
(*args)[source]¶ Return the list of all indecomposable representations, paramertized by pairs (i,j) with i<=j.
-
translation_PQ
()[source]¶ See
translation_PQ()
-