DT invariants of curves¶
DT invariants of curves
We compute invariants of moduli stacks of semistable vector bundles on a curve using the formula of Zagier in the form presented in arXiv:1310.4991.
Then we compute integer DT invariants (by taking plethystic logarithm) and invariants of stable moduli spaces following arXiv:0711.0634.
EXAMPLES:
sage: from msinvar.curve_DT import Curve
sage: C=Curve(g=0,prec=[2,2]); C
Curve of genus 0
sage: C.intDT().dict() # DT invariants for rank<=2 and 0<=deg<=2
{(1, 0): 1, (1, 1): 1, (1, 2): 1}
sage: C=Curve(g=1,prec=[2,2]); C
Curve of genus 1
sage: C.intDT().dict() # DT invariants for rank<=2 and 0<=deg<=2
{(1, 0): y^2 - 2*y + 1,
(1, 1): y^2 - 2*y + 1,
(1, 2): y^2 - 2*y + 1,
(2, 1): y^2 - 2*y + 1}
sage: C=Curve(g=2,prec=[2,2]); C
Curve of genus 2
sage: I=C.intDT()
sage: I([1,0])
y^4 - 4*y^3 + 6*y^2 - 4*y + 1
sage: I([2,0])
y^10 - 4*y^9 + 7*y^8 - 8*y^7 + 8*y^6 - 8*y^5 + 8*y^4 - 8*y^3 + 7*y^2 - 4*y + 1
sage: I([2,1])
y^10 - 4*y^9 + 7*y^8 - 12*y^7 + 24*y^6 - 32*y^5 + 24*y^4 - 12*y^3 + 7*y^2 - 4*y + 1
sage: C.stable_val([1,0]) # motivic classes of stable moduli spaces
y^4 - 4*y^3 + 6*y^2 - 4*y + 1
sage: C.stable_val([2,0]) # this value is different from int_DT
y^10 - 4*y^9 + 6*y^8 - 4*y^7 - 4*y^6 + 20*y^5 - 30*y^4 + 20*y^3 - 5*y^2
sage: C.stable_val([2,1])
y^10 - 4*y^9 + 7*y^8 - 12*y^7 + 24*y^6 - 32*y^5 + 24*y^4 - 12*y^3 + 7*y^2 - 4*y + 1
-
class
msinvar.curve_DT.
Curve
(g=0, prec=None)[source]¶ Bases:
msinvar.wall_crossing.WallCrossingStructure
Wall-crossing structure of a curve.
It is a polynomial algebra in 2 variables (actually a quantum affine plane) over the field Q(y,t), where our zeta function of the curve lives. The zeta function is \((1-yt)^{2g}/(1-t)/(1-y^2t)\).
-
eform
(a, b)[source]¶ Euler form between sheaves having Chern characters
a
,b
, where a[0] is a rank, a[1] is a degree and similarly forb
.
-
stacky_val
(r, d=None)[source]¶ Motivic class of the stack of semistable vector bundles having rank
r
and degreed
. Ifd
is None, thenr
should be a 2-vector.
-
intDT_val
(r, d=None)[source]¶ Motivic class of the moduli space of stable vector bundles having rank
r
and degreed
(not necessarily coprime).
-