Indecomposable representations

msinvar.indecomposable.hua_formula(Q)[source]

Count the number of (absolutely) indecomposable representations of the quiver Q.

We apply the Hua formula as described in arXiv:math/0608321.

EXAMPLES:

sage: from msinvar.quivers import Quiver
sage: from msinvar.indecomposable import hua_formula
sage: Q=Quiver('1-2') # quiver of type A2
sage: Q.prec([3,3])
sage: hua_formula(Q).dict()
{(0, 1): 1, (1, 0): 1, (1, 1): 1}

sage: Q=Quiver('1-1') # Jordan quiver
sage: Q.prec([3])
sage: hua_formula(Q).dict() # we use q=y^2
{(1,): y^2, (2,): y^2, (3,): y^2}
msinvar.indecomposable.hua_formula_dict(Q, q, bound)[source]

Auxiliary method.