Special rings¶
Some base rings in which our invariants take values
EXAMPLES:
sage: from msinvar.rings import RF
sage: R=RF('u,v')
sage: R.inject_variables(verbose=False)
sage: (u-v).adams(2)/(u+v)
u - v
-
class
msinvar.rings.
RationalFunctionField
(vars='y', base=Rational Field)[source]¶ Bases:
sage.rings.fraction_field.FractionField_generic
Field of rational functions in several variables, meaning fractions P/Q, where P, Q are polynomials in several variables.
EXAMPLES:
sage: from msinvar.rings import RF sage: R=RF(); R Field of Rational Functions in y sage: y=R.gen() sage: f=(1-y)**3/(1+y)**2; f (-y^3 + 3*y^2 - 3*y + 1)/(y^2 + 2*y + 1) sage: factor(f) (-1) * (y + 1)^-2 * (y - 1)^3 sage: f.adams(2) (-y^6 + 3*y^4 - 3*y^2 + 1)/(y^4 + 2*y^2 + 1) sage: R=RF('x,y'); R Field of Rational Functions in x, y sage: R.inject_variables(verbose=False) sage: f=(1-y**2)**5/(1-y)**5*(x-y) sage: f.factor() (-1) * (-x + y) * (y + 1)^5
-
msinvar.rings.
RF
¶ alias of
msinvar.rings.RationalFunctionField
-
class
msinvar.rings.
RationalFunction
[source]¶ Bases:
sage.rings.fraction_field_element.FractionFieldElement
Element class for the parent class
RationalFunctionField
.-
root_vars
(k=2)[source]¶ See
root_vars()
.
-